Inhibition of host transcription by vesicular stomatitis virus involves a novel mechanism that is independent of phosphorylation of TATA-binding protein (TBP) or association of TBP with TBP-associated factor subunits.

نویسندگان

  • H Yuan
  • S Puckett
  • D S Lyles
چکیده

The matrix (M) protein of vesicular stomatitis virus (VSV) is a potent inhibitor in vivo of transcription by all three host RNA polymerases (RNAP). In the case of host RNA polymerase II (RNAPII), the inhibition is due to lack of activity of the TATA-binding protein (TBP), which is a subunit of the basal transcription factor TFIID. Despite the potency of M protein-induced inhibition in vivo, experiments presented here show that M protein cannot directly inactivate TFIID in vitro. Addition of M protein to nuclear extracts from uninfected cells did not inhibit transcription activity, indicating that the inhibition is indirect and is mediated through host factors. The host factors that are known to regulate TBP activity include phosphorylation by host kinases and association with different TBP-associated factor (TAF) subunits. However, TBP in VSV-infected cells was found to be assembled normally with its TAF subunits, as shown by ion exchange high-pressure liquid chromatography and sedimentation velocity analysis. A normal pattern of phosphorylation of TBP in VSV-infected cells was also observed by pH gradient gel electrophoresis. Collectively, these data indicate that M protein inactivates TBP activity in RNAPII-dependent transcription by a novel mechanism, since the known mechanisms for regulating TBP activity cannot account for the inhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcription factor IIA derepresses TATA-binding protein (TBP)-associated factor inhibition of TBP-DNA binding.

The interaction of the general transcription factor (TF) IIA with TFIID is required for transcription activation in vitro. TFIID consists of the TATA-binding protein (TBP) and TBP associated factors (TAFIIs). TFIIA binds directly to TBP and stabilizes its interaction with TATA-containing DNA. In this work, we present evidence that TAFIIs inhibit TBP-DNA and TBP-TFIIA binding, and that TFIIA sti...

متن کامل

Phosphorylation of the rRNA transcription factor upstream binding factor promotes its association with TATA binding protein.

rRNA synthesis by RNA polymerase I requires both the promoter selectivity factor 1, which is composed of TATA binding protein (TBP) and three TBP-associated factors, and the activator upstream binding factor (UBF). Whereas there is strong evidence implicating a role for phosphorylation of UBF in the control of growth-induced increases in rRNA transcription, the mechanism of this effect is not k...

متن کامل

TAF-Containing and TAF-independent forms of transcriptionally active TBP in vivo.

Transcriptional activity in yeast strongly correlates with promoter occupancy by general factors such as TATA binding protein (TBP), TFIIA, and TFIIB, but not with occupancy by TBP-associated factors (TAFs). Thus, TBP exists in at least two transcriptionally active forms in vivo. The TAF-containing form corresponds to the TFIID complex, whereas the form lacking TAFs corresponds to TBP itself or...

متن کامل

HIV-1 Tat Stimulates Transcription Complex Assembly through Recruitment of TBP in the Absence of TAFs

The human immunodeficiency virus type I (HIV-1) transactivator protein Tat is an unusual transcriptional activator that is thought to act solely by promoting RNA polymerase II processivity. Here we study the mechanism of Tat action by analyzing transcription complex (TC) assembly in vivo using chromatin immunoprecipitation assays. We find, unexpectedly, that like typical activators Tat dramatic...

متن کامل

Architecture of TAF11/TAF13/TBP complex suggests novel regulation properties of general transcription factor TFIID

General transcription factor TFIID is a key component of RNA polymerase II transcription initiation. Human TFIID is a megadalton-sized complex comprising TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). TBP binds to core promoter DNA, recognizing the TATA-box. We identified a ternary complex formed by TBP and the histone fold (HF) domain-containing TFIID subunits TAF11 and TAF13...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 75 9  شماره 

صفحات  -

تاریخ انتشار 2001